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Breakdown of the power - law creep in a Class I 
AI-10 at % Zn alloy 
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800, Riyadh 11421, Saudi Arabia 

The creep behaviour of Al -10at% Zn at 573 K is divisible into three deformation regions; low 
stress region, intermediate stress region and high stress region. The creep characteristics of 
the low stress region and intermediate stress region are consistent with dislocation climb and 
viscous glide, respectively. In the high stress region, the stress exponent, n increases with 
stress, the activation energy is higher than those observed in the other two regions, the acti- 
vation area is slightly decreasing with stress and the internal stress is almost negligible. 
Present analysis shows that these characteristics are consistent with the thermally-activated 
glide motion of dislocations as a rate controlling mechanism at high stresses. 

1. I n t r o d u c t i o n  
Following recent reviews [1-3], the creep behaviour of 
solid solution alloys at intermediate stresses (power- 
law region) can be divided into two classes according 
to the value of  the stress exponent, n [ = (~ In ~)/~? In ~), 
where ~ is the shear strain rate and r is the applied 
shear stress]. For Class I alloys, n has a value of ~ 3 
while for Class II alloys n is similar to that observed 
for pure metals and. is close to 5. However, at high 
normalized stresses ~/G > 5 x 10 -4, where o- (=  2T) 
is the applied normal stress and G is the shear modulus, 
the creep rates increase rapidly with stress to higher 
values than those predicted by the extrapolation from 
the power-law region. 

For pure metals and metal-type (Class II) alloys in 
which the creep rate in the power-law region is con- 
trolled by the climb of dislocations, three suggestions 
have been offered to explain the power-law break- 
down. Firstly, Weertman [4] suggested that power-law 
breakdown may be attributed to the transition in 
climb velocity of dislocations from a linear (power- 
law domain) to an exponential function of stress 
at high stresses. Secondly, Sherby and Young [5] 
explained the breakdown on the basis of transition 
from climb behaviour controlled by lattice diffusion at 
high temperatures to that controlled by pipe diffusion 
at low temperatures. Thirdly, it is suggested by many 
investigators [6-8] that power-law breakdown results 
from the transition from diffusion controlled climb at 
intermediate stresses to thermally-activated dislocation 
glide at high stresses. 

Breakdown of power-law creep in alloys in which 
viscous glide processes are rate controlling (Class I) is 
expected when a critical value of stress is reached for 
dislocations to breakaway from their solute atmos- 
pheres [4, 9]. For these alloys, it is suggested [10-12] 
that some form of dislocation climb is rate controlling 
at high stresses based on the observations that n in this 
region is not far from 5 and the occurrence of exten- 
sive primary creep. Although there is general agreement 
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between those observations and the creep character- 
istics of Al-10at% Zn [12, 13] at high stresses, the 
following two points are not in harmony with the 
above explanation. 

1. n values tend to increase with increasing stress 
(see Fig. 1) [12, 13]. 

2. The activation energy for creep in this region is 
higher than those observed in the low stress region 
(climb) [12] and intermediate stress region (viscous 
glide) [12, 13]. 

In this paper, the thermally-activated dislocation 
glide mechanism will be examined as a possible rate 
controlling process at high stresses and will be shown 
that this mechanism is consistent with the creep 
characteristics of the alloy in the high stress region. 

2. Analysis and discussion 
Fig. 1 shows a logarithmic plot of shear strain rate, ~, 
against shear stress, z, for Al -10a t% Zn at 573K 
[12, 13]. The creep data in Fig. 1 can be divided into 
three regions: climb region (n = 4.4), viscous glide 
region (n = 3) and high-stress region with n increas- 
ing with stress; it increases from ~ 5 at ~ = 8 MPa to 

7.8 at 20MPa. The activation energies measured 
in these regions are independent of stress and have 
values of i28kJmol  -I [12], 140kJmol ~[12, 13], and 
171 kJmol -~ [12, 13] for the climb, viscous glide and 
high-stress regions, respectively. The creep charac- 
teristics of the climb region and viscous glide region 
along with the transition between these two regions 
were discussed in detail elsewhere [12] and for high- 
stress region it is suggested that climb is rate con- 
trolling [12]. However, the values of the exponent, n, 
(Fig. 1) and the activation energy in this region are not 
in agreement with those for the climb region and 
hence refuting the possibility that dislocation climb is 
rate controlling in high-stress region. 

The activation area, A*, as measured by stress 
change experiments [13] in viscous glide and high- 
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Figure 1 Log ~) against log ~ for Al-10at% Zn at 573K. The 
relations: T = a/2 and ~ = 3/28 were used to convert the tensile 
creep data of Kucha~ov/t and (2adek [13]. The dotted line represents 

values calculated from the rate equation of the thermally-activated 
dislocations glide. (A) Kucha['ovfi and (2adek [13]. (o) Soliman and 
Mohamed [12]. 

stress regions, is plotted against the applied stress, ~ on 
a logarithmic scale in Fig. 2. As shown in the figure, 
A* is inversely proportional  to z in the viscous glide 
region (A* oc T -1) and A* is related to stress in the 
high stress region by the relation A* oc T o.25. The 
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change in the stress dependence of the activation area 
from viscous glide region to high-stress region suggests 
a transition in the rate controlling mechanism. In 
addition, it has been shown by a recent analysis [12] 
that high stress region occurs at stresses higher than 
that required for dislocation breakaway from a solute 
atmosphere lending support  to the conclusion that 
viscous glide is not rate controlling at high stresses. 

The glide motion of thermally-activated dislocations 
will be examined as a possible rate controlling process 
for the high-stress region. For  this mechanism when 
dislocations cutting or by-passing a regular array of 
square obstacles, it is established that the steady state 
creep rate is given by [7, 8, 14] 

~) = %exp  - ~ ( 1  --~e/~) (1) 

where % ( =  o~mbZflv) is independent of  temperature, ~m 
is the mobile dislocation density, b is the Burger's 
vector, • is a dimensionless constant, v is Debye fre- 
quency, AF is the total free energy required to over- 
come the obstacle in the absence of any external 
stress, re is the effective stress, ~ is the stress required 
to overcome obstacle without any thermal activation, 
and k T  has the usual meaning (Boltzman's constant 
and temperature). At steady state, ~m, is a function of 
stress and the well accepted one consistent with theory 
and experiment is [15] 

~m = c~(z/Gb) 2 (2) 

where c~ is a constant of  order of  unity. The value of  
AF is defined as 

A F  = A * b ~  (3) 

where A* is the activation area swept by a dislocation 
in an activated event. 

As can be seen from Equation 1, ~5 depends on AF, 
A*, ze and z. Data  on A* and ze are available [13]; 

Figure 2 A logar i thmic  p lo t  o f  ac t iva t ion  area,  A* as a 
funct ion of  the appl ied  stress, T at  T = 573 K. 
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.values of  A* are shown in Fig. 2 and ze can be approxi- 
mated by a linear function of the applied stress z 
(re = 0.91z). The internal stress zi ( = z  - re) is a 
small fraction of the applied stress which is in agree- 
ment with the assumption that the internal stresses in 
fc c metals are negligible at high stresses [8]. 

To calculate AF, we consider the two types of  
obstacles which exist in solid solutions, namely; the 
forest of dislocations and the isolated solute atoms. 
For  the forest of dislocations, AFd, usually approxi- 
mated by the relation AFd ~ 0.5Gb 3 [14], and for 
isolated solute atoms AE~ is given by [16, 17]. 

AF a "~ 2 "(W~ Gb 3 r~ "~1/2 
bdJ (4) 

where rs is the linear dimension of the obstacle 
(r~ "" 1.5b), d is the distance between solute atoms in 
the dislocation core, and W~ is the energy of elastic 
interaction of  dislocation with a solute atom. Accord- 
ing to Friedel [18] Wa is given by 

l ( l + v ~  
W~ - 3 ~ \ 1  -- vjG[AV~I = -0.3Gb3e (5) 

where v is Poisson's ratio (v - 1/3), and AV~ and e 
are the difference in volume and the misfit ratio 
between the solute and solvent atoms, respectively; e 
for the A1-Zn solid solution is - - 0 . 0 2  [19]. 

The distance between solute atoms in the dislocation 
core, d, is given by [18] 

d = (b/c) e x p \  kT  J (6) 

where c is the solute concentration = 0.1. Taking the 
shear modulus, G [20, 21] 

G = Go - (AG)T (7) 

where G O = 2.926 x 104 MPa and AG = 17 MPa K -  1, 
W~ was calculated and substituting for W~ and c in 
Equation 6, d was found to be equal to ~ 7b. Also, AE~ 
was determined to have a value of ~ 0.09Gb 3. This 
value is in good agreement with what is expected [14]. 

The hardening due to dislocation forest and solute 
atoms represent two independent processes and their 
effect can be assumed linear, then the total height of  
the barrier to be surmounted by a moving dislocation 
in the absence of external stress is 

AF = AF d + AF~ = 0.59Gb 3 

and Equation 1 can be rewritten in the form 

3) = 70 exp [ - (0 .59Gb 3 - A*bze)/kT] (8) 

Taking the natural logarithm of both sides of  Equa- 
tion 8 and differentiating with respect to 1/T, the 
activation energy for thermally activated glide 
process, Qo is found to be 

kF  01n~ ] = ( G -  T OG` ] 
Qc = -  ~ \-/~~0~lT)[z 0"5963 OT)  

- - A * b z  e -F Tb r e - -~  ~- c3TJ (9) 

The effect of temperature on the values of A* and re  
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Figure 3 Values of Ze and A* as a function of temperature. 

[13] is shown in Fig. 3. As can be seen from the figure 
A* increases with temperature (~?A*/OT is positive) 
while re decreases with increasing temperature (OZe/OT 
is negative). Then if the values of the two terms in the 
last parenthesis of Equation 9 are comparable, Qo may 
become independent of stress (the effect of  the second 
term of Equation 9 is negligible) in agreement with the 
experimental data [12, 13]. To examine this possibility 
the two terms are calculated at 573K and re = 
13.7 MPa (data on A* as a function of  temperature is 
only available at this stress). The difference between 
those two values was found to be 0.1 eV (10 kJmol  1) 
which is within the experimental accuracy. Assuming 
that the value of  the last parenthesis of Equation 9 is 
approximately zero, the value of Qc, being indepen- 
dent of stress, is calculated to be 50.7kcalmol -l 
(212 kJ mo1-1) which is higher than the experimental 
value (171kJmol  i). 

But since the high-stress region occurs at stresses 
higher than that required for dislocations to break- 
away from their solute atmospheres [12], it is expected 
that the effect of  solute atmospheres on the motion of  
dislocations at high stresses is negligible [22]. There- 
fore, the barrier for moving dislocations is represented 
by the intersection process, i.e., AF ~- AFd ~- 0.5Gb 3. 
Then Qc is calculated to have a value of 41.8 kcal 
tool 1 (175 kJ tool -1) which is in good agreement with 
the experimental value (171 kJ mol 1). 

Now, we calculate the stress exponent n using Equa- 
tion 8: 

( ~  In ~'~ Oln~o 
n = \c31n.cj T - t ? lnz  

A*bze(  c3 in A * )  
+ ~ 1 + -~l-n~ (10) 

Since % is proportional to ~m, then from Equation 2, 

3 5 3 1  



T A B L E  I Values of  n (Equation 11) and nc (calculated from 
the slope of  the creep data, Fig. 1) at T = 573 K 

T (MPa) 

12.5 15 17.5 

n 6.1 6.7 7.6 
n0 5.4. 5.7 6.8 

(~ In ~0/c3 In z) = 2, and from Fig. 2, (O In A*/a In z) = 
¼; then 

3 (A*b e) 
n = 2 + 4 \  kT J (11) 

Table I gives the values of n calculated by means of 
Equation 11 using the experimental data of A* and ze. 
Table I also gives nc values calculated from the slope of 
log ~ - log z data as shown in Fig. 1. As can be seen 
from the table the agreement is satisfactory. As it is 
established that thermally-activated glide motion of 
dislocations can predict satisfactorily the Qc and n val- 
ues of the creep data, we have attempted to calculate the 
creep rate using Equation 8 for AF = 0.5Gb 3, fl ~_ 1 
and v = 8.71 x 1012 sec i. The estimated values of 3) 
are plotted in Fig. 1 as a function of stress (dotted line); 
these values are a factor of 3 below the experimental 
ones. This consistency between the experimental creep 
data of the alloy at high stresses and the prediction of 
the thermally-activated dislocation glide mechanism 
indicates that the agreement obtained is not fortuitous. 

Finally, if a limited number of data points is con- 
sidered in the high stress region, then they can be con- 
nected by a straight line having a slope of. ,,~ 5 and hence 
the high stress region may be interpreted as con- 
trolled by dislocation climb. Therefore determination 
of, Qo, A*, % and other creep parameters will help 
in unambiguously identifying the creep controlling 
mechanism. 

3. Conclusions 
The present analysis shows that high-stress creep data 
of the AI-10 at % Zn alloy, whose creep behaviour is 
controlled by viscous glide motion of dislocations at 
intermediate stresses, seems to correlate well with the 
prediction of thermally-activated dislocation glide. This 
correlation is manifested by the good agreement bet- 
ween the experimental parameters of the alloy and their 
values predicted by using the rate equation of the con- 
trolling mechanism. 
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